В ходе процесса вызывающего сокращение мышечного волокна при поступлении

В ходе процесса вызывающего сокращение мышечного волокна

В ходе процесса вызывающего сокращение мышечного волокна при поступлении

Механизм АТФ После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется.

Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне. Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения. Ресинтез АТФ Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ.

Реализуется сложный механизм взаимодействия этих нитей, в котором можно выделить несколько процессов:

  • Центральная часть миозиновой нити соединяются со связками актинов.
  • Достигнутый контакт актина с миозином способствует конформационному перемещению молекул последнего. Головки вступают в фазу активности и разворачиваются. Таким образом осуществляются молекулярные механизмы мышечного сокращения на фоне перестройки нитей активных элементов по отношению друг к другу.
  • Затем происходит взаимное расхождение миозинов и актинов с последующим восстановлением головной части последних.

Весь цикл выполняется несколько раз, в результате чего происходит смещение вышеупомянутых нитей, а Z-сегменты саркомеров сближаются и укорачиваются.
Физиологические свойства работы мышц Среди основных физиологических свойств мышечной работы выделяют сократимость и возбудимость.

Механизм мышечного сокращения

Толстые стрелки — распространение потенциала действия при возбуждении волокна и перемещение ионов Саиз цистерн и продольных трубочек в миофибриллы, где они содействуют образованию мостиков между нитями актином и миозином и скольжение этих нитей (сокращение волокна) за счет гребковых движений головок миозина.

имеющихся мостиков и образованию в присутствии Сановых мос­тиков на следующем участке актиновой нити. В результате повторе­ния подобных процессов многократного образования и распада мос­тиков сокращается длина отдельных саркомеров и всего мышечного волокна в целом.

Максимальная концентрация кальция в миофибрилле достигается уже через 3 мс после появления потенциала дей­ствия в поперечных трубочках, а максимальное напряжение мышеч­ного волокна — через 20 мс.

Мышечное сокращение

  • 1 Введение
  • 2 Скольжение миозина относительно актина
  • 3 Источник энергии для сокращения
  • 4 Механизм регуляции
    • 4.1 От клеточной мембраны до саркоплазматического ретикулума
    • 4.2 От выделения ионов Ca2+ до сокращения миофибрилл
  • 5 Основные белки миофибрилл
  • 6 Примечания
  • 7 Литература
  • 8 См. также

Схема, показывающая мышцы в расслабленном (выше) и сокращённом (ниже) положениях.

Основой всех типов мышечного сокращения служит взаимодействие актина и миозина. В скелетных мышцах за сокращение отвечают миофибриллы (примерно две трети сухого веса мышц).

Миофибриллы — структуры толщиной 1 — 2 мкм, состоящие из саркомеров — структур длиной около 2,5 мкм, состоящих из актиновых и миозиновых (тонких и толстых) филаментов и Z-дисков, соединённых с актиновыми филаментами.

   механизм мышечного сокращения

Эти качества, в свою очередь, обуславливаются проводимостью волокон, пластичностью и свойством автоматии.

Что касается проводимости, то она обеспечивает распространение процесса возбудимости между миоцитами по нексусам – это специальные электропроводящие контуры, отвечающие за проведение импульса сокращения мышцы.

Однако после сокращения или расслабления тоже совершается работа волокон.
За их спокойное состояние в определенной форме отвечает пластичность, определяющая сохранение постоянного тонуса, в котором на текущий момент находится механизм мышечного сокращения.

Физиология пластичности может проявляться как в виде сохранения укороченного состояния волокон, так и в их растянутом виде. Интересно и свойство автоматии. Она определяет способность мышц входить в рабочую фазу без подключения нервной системы.

Строение и механизм сокращения скелетных мышц

Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна. 3 процесса с АТФ При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ.

Механизмы сокращения и расслабления мышечного волокна

Динамически-уступающий механизм мышечного сокращения скелетной мышцы срабатывает, когда волокна функционируют в условиях растяжения.

Потребность в параллельном растяжении также может быть обусловлена тем, что работа волокон предполагает выполнение операций со сторонними телами.

В заключение Процессы организации мышечного действия подключают самые разные функциональные элементы и системы.

В работе задействуется сложный комплекс участников, каждый из которых выполняет свою задачу.

Можно видеть, как в процессе активации механизма мышечных сокращений срабатывают и косвенные функциональные блоки.

Например, это касается процессов генерации энергетического потенциала для совершения работы или системы блокировки центров связок, через которые происходит соединение миозинов и актинов.

Механизмы сокращения мышечного волокна

Важно

Объем этого резерва в несколько раз превышает запас АТФ и в то же время способствует его генерации. Также помимо АТФ энергетическим источником для мышцы может выступать гликоген. К слову, на мышечные волокна приходится около 75% всего запаса данного вещества в организме.

Сопряжение возбудительных и сократительных процессов В спокойном состоянии нити волокон не взаимодействуют друг с другом посредством скольжения, так как центры связок закрываются молекулами тропомиозина. Возбуждение может иметь место только после электромеханического сопряжения. Данный процесс также делится на несколько этапов:

  • При активации нейромышечного синапса на мембране миофибриллы формируется так называемый постсинаптический потенциал, накапливающий энергию для действия.
  • Возбуждающий импульс благодаря системе трубок расходится по мембране и активизирует ретикулум.

Механизм мышечных сокращений кратко

Структура и иннервация скелетных мышц В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям.

В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл.

Внимание

В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц. Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями.

Саркомеры — это сократительный аппарат мышцы.

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости.

Источник: https://dtpstory.ru/v-hode-protsessa-vyzyvayushhego-sokrashhenie-myshechnogo-volokna/

Механизм мышечных сокращений. Функции и свойства скелетных мышц

В ходе процесса вызывающего сокращение мышечного волокна при поступлении

Сокращение мышц — это сложный процесс, состоящий из целого ряда этапов. Главными составляющими здесь являются миозин, актин, тропонин, тропомиозин и актомиозин, а также ионы кальция и соединения, которые обеспечивают мышцы энергией. Рассмотрим виды и механизмы мышечного сокращения. Изучим, из каких этапов они состоят и что необходимо для цикличного процесса.

Мышцы

Мышцы объединяются в группы, у которых одинаковый механизм мышечных сокращений. По этому же признаку они и разделяются на 3 вида:

  • поперечно-полосатые мышцы тела;
  • поперечно-полосатые мышцы предсердий и сердечных желудочков;
  • гладкие мышцы органов, сосудов и кожи.

Поперечно-полосатые мышцы входят в опорно-двигательный аппарат, являясь его частью, так как помимо них сюда входят сухожилия, связки, кости. Когда реализуется механизм мышечных сокращений, выполняются следующие задачи и функции:

  • тело передвигается;
  • части тела перемещаются друг относительно друга;
  • тело поддерживается в пространстве;
  • вырабатывается тепло;
  • кора активируется посредством афферентации с рецептивных мышечных полей.

Из гладких мышц состоит:

  • двигательный аппарат внутренних органов, в который входят бронхиальное дерево, легкие и пищеварительная трубка;
  • лимфатическая и кровеносная системы;
  • система мочеполовых органов.

Физиологические свойства

Как и у всех позвоночных животных, в человеческом организме выделяют три самых важных свойства волокон скелетных мышц:

  • сократимость — сокращение и изменение напряжения при возбуждении;
  • проводимость — движение потенциала по всему волокну;
  • возбудимость — реагирование на раздражитель посредством изменения мембранного потенциала и ионной проницаемости.

Мышцы возбуждаются и начинают сокращаться от нервных импульсов, идущих от центров. Но в искусственных условиях используют электростимуляцию. Мышца тогда может раздражаться напрямую (прямое раздражение) или через нерв, иннервирующий мышцу (непрямое раздражение).

Виды сокращений

Механизм мышечных сокращений подразумевает преобразование химической энергии в механическую работу. Этот процесс можно измерить при эксперименте с лягушкой: ее икроножную мышцу нагружают небольшим весом, а затем раздражают легкими электроимпульсами.

Сокращение, при котором мышца становится короче, называется изотоническим. При изометрическом сокращении укорачивания не происходит. Сухожилия не позволяют при развитии мышцей силы укорачиваться.

Еще один ауксотонический механизм мышечных сокращений предполагает условия интенсивных нагрузок, когда мышца укорачивается минимальным образом, а сила развивается максимальная.

Структура и иннервация скелетных мышц

В поперечно-полосатые скелетные мышцы входит множество волокон, находящихся в соединительной ткани и крепящихся к сухожилиям. В одних мышцах волокна расположены параллельно длинной оси, а в других они имеют косой вид, прикрепляясь к центральному тяжу сухожильному и к перистому типу.

особенность волокна заключается в саркоплазме массы тонких нитей — миофибрилл. В них входят светлые и темные участки, чередующиеся друг с другом, а у соседних поперечно-полосатые волокна находятся на одном уровне — на поперечном сечении. Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

Иннервация

Этот процесс у поперечно-полосатых мышечных волокон реализуется посредством нервных волокон, а именно аксонов мотонейронов спинного мозга и головного ствола. Один мотонейрон иннервирует несколько волокон мышц.

Комплекс с мотонейроном и иннервируемыми мышечными волокнами называют нейромоторной (НМЕ), или двигательной единицей (ДЕ). Среднее число волокон, которые иннервирует один мотонейрон, характеризует величину ДЕ мышцы, а обратную величину называют плотностью иннервации.

Последняя является большой в тех мышцах, где движения небольшие и «тонкие» (глаза, пальцы, язык). Малое ее значение будет, напротив, в мышцах с «грубыми» движениями (например, туловище).

Иннервация может быть одиночной и множественной. В первом случае она реализуется компактными моторными окончаниями. Обычно это характерно для крупных мотонейронов. Мышечные волокна (называющиеся в этом случае физическими, или быстрыми) генерируют ПД (потенциалы действий), которые распространяются на них.

Множественная иннервация встречается, к примеру, во внешних глазных мышцах. Здесь не генерируется потенциал действия, так как в мембране нет электровозбудимых натриевых каналов.

В них распространяется деполяризация по всему волокну из синаптических окончаний. Это необходимо для того, чтобы привести в действие механизм мышечного сокращения.

Процесс здесь происходит не так быстро, как в первом случае. Поэтому его называют медленным.

Структура миофибрилл

Исследования мышечного волокна сегодня проводятся на основе рентгеноструктурного анализа, электронной микроскопии, а также гистохимическими методами.

Рассчитано, что в каждую миофибриллу, диаметр которой составляет 1 мкм, входит примерно 2500 протофибрилл, то есть удлиненных полимеризованных молекул белков (актина и миозина). Актиновые протофибриллы в два раза тоньше миозиновых. В покое эти мышцы находятся так, что актиновые нити кончиками проникают в промежутки между миозиновыми протофибриллами.

Узкая светлая полоса в диске А свободна от актиновых нитей. А мембрана Z скрепляет их.

На миозиновых нитях есть поперечные выступы длиной до 20 нм, в головках которых находится порядка 150 молекул миозина. Они отходят биополярно, и каждая головка соединяет миозиновую с актиновой нитью.

Когда происходит усилие актиновых центров на нитях миозина, актиновая нить приближается к центру саркомера. В конце миозиновые нити доходят до линии Z. Тогда они занимают собой весь саркомер, а актиновые находятся между ними.

При этом длина диска I сокращается, а в конце он исчезает полностью, вместе с чем линия Z становится толще.

Так, по теории скользящих нитей, объясняется сокращение длины волокна мышцы. Теория, получившая название «зубчатого колеса», была разработана Хаксли и Хансоном в середине двадцатого века.

Механизм мышечного сокращения волокна

Главным в теории является то, что не нити (миозиновые и актиновые) укорачиваются. Длина их остается неизменной и при растяжении мышц. Но пучки тонких нитей, проскальзывая, выходят между толстыми нитями, уменьшается степень их перекрытия, таким образом происходит сокращение.

Молекулярный механизм мышечного сокращения посредством скольжения актиновых нитей заключается в следующем. Миозиновые головки соединяют протофибриллу с актиновой. При их наклонах происходит скольжение, двигающее актиновую нить к центру саркомера. За счет биполярной организации миозиновых молекул на обеих сторонах нитей создаются условия для скольжения актиновых нитей в разные стороны.

При расслаблении мышц миозиновая головка отходит от актиновых нитей. Благодаря легкому скольжению расслабленные мышцы растяжению сопротивляются гораздо меньше. Поэтому они пассивно удлиняются.

Этапы сокращения

Механизм мышечного сокращения кратко можно подразделить на следующие этапы:

  1. Мышечное волокно стимулируется, когда потенциал действия поступает от мотонейронов из синапсов.
  2. Потенциал действия создается на мембране мышечного волокна, а затем распространяется к миофибриллам.
  3. Совершается электромеханическое сопряжение, представляющее собой преобразование электрического ПД в механическое скольжение. В этом обязательно участвуют ионы кальция.

Для лучшего понимания процесса активации волокна ионами кальция удобно рассмотреть структуру актиновой нити. Длина ее составляет порядка 1 мкм, толщина — от 5 до 7 нм. Это пара закрученных ниток, которые напоминают мономер актина. Примерно через каждые 40 нм здесь находятся сферические тропониновые молекулы, а между цепями — тропомиозиновые.

Когда ионы кальция отсутствуют, то есть миофибриллы расслабляются, длинные тропомиозиновые молекулы блокируют крепление актиновых цепей и мостиков миозина. Но при активизации ионов кальция тропомиозиновые молекулы опускаются глубже, и участки открываются.

Тогда миозиновые мостики прикрепляются к актиновым нитям, а АТФ расщепляется, и сила мышц развивается. Это становится возможным за счет воздействия кальция на тропонин. При этом молекула последнего деформируется, проталкивая тем самым тропомиозин.

Когда мышца расслаблена, в ней на 1 грамм сырого веса содержится больше 1 мкмоль кальция. Соли кальция изолированы и находятся в особых хранилищах. В противном случае мышцы бы все время сокращались.

Хранение кальция происходит следующим образом. На разных участках мембраны клетки мышцы внутри волокна имеются трубки, через которые происходит соединение со средой вне клеток. Это система поперечных трубочек.

А перпендикулярно ей находится система продольных, на концах которых — пузырьки (терминальные цистерны), расположенные в непосредственной близости к мембранам поперечной системы. Вместе получается триада.

Именно в пузырьках хранится кальций.

Так ПД распространяется внутрь клетки, и происходит электромеханическое сопряжение. Возбуждение проникает в волокно, переходит в продольную систему, высвобождает кальций. Таким образом осуществляется механизм сокращения мышечного волокна.

3 процесса с АТФ

При взаимодействии обеих нитей при наличии ионов кальция немалая роль отводится АТФ. Когда реализуется механизм мышечного сокращения скелетной мышцы, энергия АТФ применяется для:

  • работы насоса натрия и калия, который поддерживает постоянную концентрацию ионов;
  • этих веществ по разные стороны мембраны;
  • скольжения нитей, укорачивающих миофибриллы;
  • работы насоса кальция, действующего для расслабления.

АТФ находится в клеточной мембране, нитях миозина и мембранах ретикулума саркоплазматического. Фермент расщепляется и утилизируется миозином.

Потребление АТФ

Известно, что миозиновые головки взаимодействуют с актином и содержат элементы для расщепления АТФ. Последняя активизируется актином и миозином при наличии ионов магния. Поэтому расщепление фермента происходит при прикреплении миозиновой головки к актину. При этом чем больше поперечных мостиков, тем скорость расщепления будет выше.

Механизм АТФ

После завершения движения молекула АФТ обеспечивает энергией для разделения участвующих в реакции миозина и актина. Миозиновые головки разделяются, АТФ расщепляется до фосфата и АДФ. В конце подсоединяется новая АТФ-молекула, и цикл возобновляется. Таковым является механизм мышечного сокращения и расслабления на молекулярном уровне.

Активность поперечных мостиков будет продолжаться лишь до тех пор, пока происходит гидролиз АТФ. При блокировке фермента мостики не станут снова прикрепляться.

С наступлением смерти организма уровень АТФ в клетках падает, и мостики остаются устойчиво прикрепленными к актиновой нити. Так происходит стадия трупного окоченения.

Ресинтез АТФ

Ресинтез возможно реализовать двумя путями.

Посредством ферментативного переноса от креатинфосфата фосфатной группы на АДФ. Так как запасов в клетке креатинфосфата намного больше АТФ, ресинтез реализуется очень быстро. В то же время посредством окисления пировиноградной и молочной кислот ресинтез будет осуществляться медленно.

АТФ и КФ могут исчезнуть полностью, если ресинтез будет нарушен ядами. Тогда и кальциевый насос прекратит работу, вследствие чего мышца необратимо сократится (то есть настанет контрактура). Таким образом, нарушится механизм мышечного сокращения.

Физиология процесса

Подытоживая вышесказанное, отметим, что сокращение волокна мышцы состоит в укорочении миофибрилл в каждом из саркомеров. Нити миозина (толстые) и актина (тонкие) связаны концами в расслабленном состоянии.

Но они начинают скользящие движения друг навстречу к другу, когда реализуется механизм мышечного сокращения. Физиология (кратко) объясняет процесс, когда под влиянием миозина выделяется необходимая энергия для преобразования АТФ в АДФ.

При этом активность миозина будет реализована лишь при достаточном содержании ионов кальция, накапливающихся в саркоплазматической сети.

Источник: https://FB.ru/article/251118/mehanizm-myishechnyih-sokrascheniy-funktsii-i-svoystva-skeletnyih-myishts

Механизм мышечного сокращения

В ходе процесса вызывающего сокращение мышечного волокна при поступлении

Мышечное сокращение является сложным механо-химическим процессом, в ходе которого происходит преобразование химической энергии гидролитического расщепления АТФ в механическую работу, совершаемую мышцей.

В настоящее время этот механизм еще полностьюне раскрыт. Но достоверно известно следующее:

1. Источником энергии, необходимой для мышечной работы является АТФ;

2. Гидролиз АТФ, сопровождающийся выделением энергии, катализируется миозином, который как уже отмечалось, обладает ферментативной активностью;

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов Са 2+ в саркоплазме миоцитов, вызываемое двигательным нервным импульсом;

4. Во время мышечного сокращения между толстыми и тонкими нитями миофибрилл возникают поперечные мостики или спайки;

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Имеется много гипотез, пытающихся объяснить молекулярный механизм мышечного сокращения. Наиболее обоснованной в настоящее время является гипотеза«весельной лодки » или «гребная гипотеза » Х. Хаксли. В упрощенном виде её суть заключается в следующем.

В мышце, находящейся в состоянии покоя, толстые и тонкие нити миофибрилл друг с другом не соединены, так как участки связывания на молекулах актина закрыты молекулами тропомиозина.

Не нашли ответа на свой вопрос? Узнайте, как решить именно Вашу проблему – позвоните прямо сейчас: +7 (499) 938 42 63 (Москва) 8 (800) 350 10 92 (Остальные регионы) Это быстро и бесплатно!

Мышечное сокращение происходит под воздействием двигательного нервного импульса, представляющего собою волну повышенной мембранной проницаемости, распространяющуюся по нервному волокну[1]. Эта волна повышенной проницаемости передается через нервно-мышечный синапс на Т-систему саркоплазматической сети и в конечном итоге достигает цистерн, содержащих ионы кальция в большой концентрации.

В результате значительного повышения проницаемости стенки цистерн (это тоже мембрана!) ионы кальция выходят из цистерн и их концентрация в саркоплазме за очень короткое время (около 3 мс) возрастает примерно в 1000 раз. Ионы кальция, находясь в высокой концентрации, присоединяются к белку тонких нитей — тропонину и меняют его пространственную форму (конформацию).

Изменение конформации тропонина, в свою очередь, приводит к тому, что молекулы тропомиозина смещаются вдоль желобка фибриллярного актина, составляющего основу тонких нитей, и освобождают тот участок актиновых молекул, который предназначен для связывания с миозиновыми головками. В результате этого между миозином и актином (т.е.

между толстыми и тонкими нитями) возникает поперечный мостик, расположенный под углом 90º. Поскольку в толстые и тонкие нити входит большое число молекул миозина и актина (около 300 в каждую). то между мышечными нитями образуется довольно большое количество поперечных мостиков или спаек. На электронной микрофотографии (рис.

15) хорошо видно, что между толстыми и тонкими нитями имеется большое количество поперечно расположенных мостиков.

Рис. 15. Электронная микрофотография продольногосреза

участка миофибриллы (увеличение 300000 раз) (Л.Страйнер, 1985)

Образование связи между актином и миозином сопровождается повышением АТФ-азной активности последнего (т.е. актин действует подобно аллостерическим активаторам ферментов). в результате чего происходит гидролиз АТФ:

Скелетные мышцы

Скелетная мышца представляет собой сложную систему, преоб­разующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.

Структурная организация мышечного волокна. Мышечное во­локно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — миофибриллы.

Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматическая сеть (ретикулум) и система поперечных тру­бочек — Т-система. Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла.

Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены по­следовательно, поэтому сокращение саркомеров вызывает сокраще­ние миофибриллы и общее укорочение мышечного волокна.

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-мик­роскопические исследования показали, что поперечная исчерчен­ность обусловлена особой организацией сократительных белков миофибрилл — актина (молекулярная масса 42 000) и миозина (молекулярная масса около 500 000).

Актиновые филаменты представ­лены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6—8 нм, количество которых достигает около 2000, одним концом прикреп­лены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина.

С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина. Тропонин и тропомиозин играют важ­ную роль в механизмах взаимодействия актина и миозина. В сере­дине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм.

В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более светлая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина.

В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния — структура, которая удерживает нити миозина.

На поперечном срезе мышечного волокна можно увидеть гексагональную органи­зацию миофиламента: каждая нить миозина окружена шестью ни­тями актина (рис. 2.20, Б).

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°.

Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином.

Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование микроэлектродной техники в сочетании с интер­ференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается.

Эти наблюдения свиде­тельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась об­ласть взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н.

Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых мио­зиновых.

В настоящее время выяснены многие детали этого меха­низма и теория получила экспериментальное подтверждение.

Механизм мышечного сокращения. В процессе сокращения мы­шечного волокна в нем происходят следующие преобразования:

А. Электрохимическое преобразование:

2. Распространение ПД по Т-системе.

3. Электрическая стимуляция зоны контакта Т-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+.

Б. Хемомеханическое преобразование:

4. Взаимодействие ионов Са2+ с тропонином, освобождение ак­тивных центров на актиновых филаментах.

5. Взаимодействие миозиновой головки с актином, вращение го­ловки и развитие эластической тяги.

6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укоро­чение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ.

При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3—5 м/с при температуре 36 oС.

Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мы­шечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократитель­ным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух со­седних саркомеров.

Электрическая стимуляция места контакта при­водит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+ из цистерн и повышению внутриклеточной концентрации Са2+ с 107до 105 M.

Совокупность процессов, при­водящих к повышению внутриклеточной концентрации Са2+ состав­ляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электриче­ского сигнала ПД в химический — повышение внутриклеточной концентрации Са2+, т. е.

электрохимическое преобразование.

При повышении внутриклеточной концентрации ионов Са2+ тропомиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина.

Это смещение тропомиозина обусловлено изменением конформации молекулы белка тропонина при связывании Са2+.

Следовательно, участие ионов Са2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.

Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет.

После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью кор­релировали друг с другом (рис. 2.21).

Таким образом, четвертым этапом электромеханического сопряжения является взаимодейст­вие кальция с тропонином.

Следующим, пятым, этапом электромеханического сопря­жения является присоединение головки поперечного мостика к актиновому филаменту к первому из нескольких последовательно расположенных стабильных центров.

При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько ак­тивных центров, которые последовательно взаимодействуют с соот­ветствующими центрами на актиновом филаменте.

Вращение голов­ки приводит к увеличению упругой эластической тяги шейки по­перечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок попе­речных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е.

существует последовательность их взаимо­действия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Источник: http://pravostoriya.ru/mehanizm-myshechnogo-sokrashheniya/

В ходе процесса вызывающего сокращение мышечного волокна при поступлении

В ходе процесса вызывающего сокращение мышечного волокна при поступлении

Фермент расщепляется и утилизируется миозином.

В ходе процесса вызывающего сокращения мышечного волокна при поступлении

Благодаря этому получается поперечная полосатость по всему волокну мышц.

Саркомером является комплекс из темного и двух светлых дисков, и он отграничивается Z-образными линиями. Саркомеры — это сократительный аппарат мышцы. Получается, что сократительное мышечное волокно состоит из:

  • сократительного аппарата (системы миофибрилл);
  • трофического аппарата с митохондриями, комплексом Гольджи и слабой эндоплазматической сетью;
  • мембранного аппарата;
  • опорного аппарата;
  • нервного аппарата.

Мышечное волокно разделяется на 5 частей со своими структурами и функциями и является целостной частью ткани мышц.

3. Механизм мышечного сокращения и расслабления

Подвижность является характерным свойством всех форм жизни.

Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, пе­ремещении рибосом в ходе белкового синтеза, сокращении и рас­слаблении мышц.

Мышечное сокращение – наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.

У человека различают несколько видов мышечной ткани. По­перечно-полосатая мышечная ткань составляет мышцы скелета (скелетные мышцы, которые мы можем сокращать произвольно).

«синаптическая задержка») и, взаимодействуя с холинорецепторами, вызывает изменение проницаемости мембраны для Na, что приводит к деполяризации постсинаптической мембраны и генерации на ней волну деполяризации, которая носит название возбуждающего постсинаптического потенциала, (ВПСП), величина которого превышает Ек соседних, электрогенных участков мембраны мышечного волокна. В результате в них возникает ПД (потенциал действия), который распространяется по всей поверхности мышечного волокна, вызывая затем его сокращение, инициируя процесс т.н. электромеханического сопряжения (Каплинг). Медиатор в синаптической щели и на постсинаптической мембране работает очень короткое время, так как разрушается ферментом холинэстеразой, которая готовит синапс к восприятию новой порции медиатора.

Эти наблюдения свиде­тельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась об­ласть взаимного перекрытия актиновых и миозиновых нитей.

Эти факты позволили Н. Huxley и A. Huxley предложить независимо друг от друга теорию скольжения нитей для объяснения механизма мышечного сокращения.

Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых мио­зиновых.

В настоящее время выяснены многие детали этого меха­низма и теория получила экспериментальное подтверждение.

Механизм мышечного сокращения.

В процессе сокращения мы­шечного волокна в нем происходят следующие преобразования:

А.

После образования связи миозиновая головка, ранее расположенная под прямым углом к нитям, наклоняется и протаскивает актиновую нить относительно миозиновой приблизительно на 10 нм. Образовавшийся атин-миозиновый комплекс препятствует дальнейшему скольжению нитей относительно друг друга, поэтому необходимо его разъединение. Это возможно только за счет энергии АТФ.

Миозин обладает АТФ-азной активностью, то есть способен вызывать гидролиз АТФ. Выделяющаяся при этом энергия разрывает связь между актином и миозином, и миозиновая головка способна взаимодействовать с новым участком молекулы актина. Работа мостиков синхронизирована таким образом, что связывание, наклон и разрыв всех мостиков одной нити происходит одновременно.

Внимание

В это время проходят процессы электромеханического сопряжения и открываются центры связок. На данной стадии подготавливается механизм сокращения мышечного волокна, который активизируется после распространения соответствующего импульса.

  • Фаза укорочения – длится 50 мс в среднем.
  • Фаза расслабления – также длится примерно 50 мс.

Режимы мышечного сокращения

Работа при одиночном сокращении была рассмотрена как пример «чистой» механики мышечных волокон. Однако в естественных условиях такая работа не совершается, поскольку волокна находятся в постоянном отклике на сигналы двигательных нервов.
Другое дело, что в зависимости от характера этого отклика может происходить работа в следующих режимах:

  • Сокращения возникают при пониженной частоте импульсов.

В отличие от поперечной системы продольная система не соединяется с окружающей средой.

Таким образом, электромеханическое сопряжение происходит посредством распространения потенциала действия по мембранам поперечной системы внутрь клетки.

При этом возбуждение быстро проникает во внутрь волокна, переходит к продольной системе и, в конечном счете, вызывает высвобождение ионов Са2+, которые хранятся в терминальных цистернах, во внутриклеточную жидкость около миофибрилл, что ведет к сокращению.

Источник: http://nasledstva-centr.ru/v-hode-protsessa-vyzyvayushhego-sokrashhenie-myshechnogo-volokna-pri-postuplenii/

Большая Медицинская Энциклопедия

с., возникающее в ответ на нервный импульс. Графически (рис.) одиночное М.

с. имеет вид волны с восходящей и нисходящей фазами. Первая фаза называется сокращением, вторая — расслаблением. Расслабление более продолжительно во времени, чем сокращение.

Общее время одиночного М. с. составляет доли секунды и зависит от функц, состояния мышцы.

Продолжительность М. с. уменьшается при умеренной работе и возрастает при утомлении. Одиночное М. с. изолированного волокна в условиях постоянной температуры подчиняется закону «» (см.).

Между потенциалом действия мышцы и началом одиночного М.

Типы мышечных сокращений. Качаемся правильно

Мы в предыдущих заметках (в частности в этой, []) уже рассматривали, как происходит сам процесс сокращения мускулатуры, поэтому, чтобы не повторяться, приведу только общую схему.

…и наглядную анимацию (кликните и запустите приложение нажав «play»).

Двигательный центр (motor unit) состоит из двигательного нейрона и определенного количества иннервируемых волокон. Мышечное сокращение является ответом мускульной единицы на потенциал действия его двигательного нейрона.

Всего существует 3 вида градуированных ответов мышц: волновое суммирование (wave summation) – формируется за счет увеличения частоты стимула; многоэлементное суммирование (multiple motor unit summation) – формируется за счет увеличения силы раздражителя (увеличение количества двигательных нейронов); лестница (treppe) – реакция с определенной частотой/силой на постоянный стимул.

Сокращение скелетной мышцы и его механизмы

тетанические (зубчатый тетанус и гладкий тетанус) – когда эфферентный сигнал поступает чаще и приходит в период расслабления (зубчатый тетанус) или в период укорочения (гладкий тетанус).

1) тонические (длительные) – стойкие длительные сокращения мышц, обеспечивающие поддержание позы 2) фазические – быстрые, которые обеспечивают передвижение в пространстве или изменение позы. Периоды сокращения. 1.

Латентный (0-10 сек) 2.

Укорочение 3. Расслабление Скелетные мышцы отличаются подчиненностью сознанию и полной зависимостью их от эфферентных управляющих сигналов со стороны нервной системы.

В случает деинервации мышцы ее сократительная способность исчезает. Уровни организации скелетной мышцы: Цельная мышца окружена эпимизием, к ней подходят сосуды и нервы.

Физиология мышечного сокращения

В результате в них возникает ПД (потенциал действия), который распространяется по всей поверхности мышечного волокна, вызывая затем его сокращение, инициируя процесс т.н. электромеханического сопряжения (Каплинг).

Медиатор в синаптической щели и на постсинаптической мембране работает очень короткое время, так как разрушается ферментом холинэстеразой, которая готовит синапс к восприятию новой порции медиатора.

Показано также, что часть не прореагировавшего АХ может возвращаться в нервное волокно.

При очень частых ритмах раздражения постсинаптические потенциалы могут суммироваться, так как холинэстераза не успевает полностью расщепить выделяющийся в нервных окончаниях АХ.

В результате такой суммации постсинаптическая мембрана все более и более деполяризуется.

При этом соседние электрогенные

Например, выполнение с 60% задействует определенную совокупность двигательных единиц, тогда как более крупные двигательные единицы ожидают более высокой нагрузки.

Поскольку последовательное задействование двигательных единиц зависит от нагрузки, необходимо разрабатывать специальные программы, чтобы активизировать и основные группы двигательных единиц и мышечных волокон, играющих доминирующую роль в избранном виде спорта.

Источник: https://disk-shetka.ru/v-hode-processa-vyzyvajuschego-sokraschenie-myshechnogo-volokna-pri-postuplenii-80666/

Адвокат Сорокин
Добавить комментарий